题目内容
【题目】如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.
试判断BD与AC的位置关系和数量关系,并说明理由;
如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;
如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.
试猜想BD与AC的数量关系,请直接写出结论;
你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.
【答案】(1)见解析;(2)见解析;(3) ①BD=AC理由见解析;见解析.
【解析】
(1)可以证明△BDE≌△ACE推出BD=AC,BD⊥AC.
(2)如图2中,不发生变化.只要证明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因为∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°-90°=90°,即可证明.
(3)①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可.
②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°即可解决问题.
解:,,
理由是:延长BD交AC于F.
,
,
在和中
≌,
,,
,
,
,
,
,
;
不发生变化.
如图2,令AC、DE交点为O
理由:,
,
,
在和中
≌,
,,
,
,
,
,
,
;
(3);
证明:和是等边三角形,
,,,,
,
,
在和中
≌,
.
②夹角为.
解:如图3,令AC、BD交点为F,
由①知≌,
,
,即BD与AC所成的角的度数为或
练习册系列答案
相关题目