题目内容

【题目】如图1,在中,EDAE上的一点,且,连接BDCD

试判断BDAC的位置关系和数量关系,并说明理由;

如图2,若将绕点E旋转一定的角度后,试判断BDAC的位置关系和数量关系是否发生变化,并说明理由;

如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.

试猜想BDAC的数量关系,请直接写出结论;

你能求出BDAC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.

【答案】(1)见解析;(2)见解析;(3) ①BD=AC理由见解析;见解析.

【解析】

(1)可以证明△BDE≌△ACE推出BD=AC,BD⊥AC.

(2)如图2中,不发生变化.只要证明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因为∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°-90°=90°,即可证明.

(3)①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可.

②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°即可解决问题.

解:
理由是:延长BDACF












不发生变化.
如图2,令ACDE交点为O

理由:










(3)
证明:是等边三角形,





②夹角为
解:如图3,令ACBD交点为F

由①知

,即BDAC所成的角的度数为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网