题目内容
【题目】如图1,已知,是等边三角形,点为射线上任意一点(点与点不重合),连结,将线段绕点逆时针旋转得到线段,连结并延长交射线于点.
(1)如图1,当时,________,猜想________;
(2)如图2,当点为射线上任意一点时,猜想的度数,并说明理由;
【答案】(1),;(2),理由见解析
【解析】
(1)∠EBF与∠ABE互余,而∠ABE=60°,即可求得∠EBF的度数;先证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF,即可得到答案;
(2)先证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF,即可得到答案.
证明:(1)∵∠ABC=90°,△ABE是等边三角形,
∴∠ABE=60°,
∴∠EBF=30°;
猜想:;
理由如下:如图,
∵,,
∴,
∵,,
∴,
∴,
∴,
∴;
故答案为:30;60;
(2)结论:,
如图:
∵,
∴
在和中,,,
∴
∴.
∴
∴;
练习册系列答案
相关题目
【题目】重庆市居民用水的水价实行阶梯收费,标准如下表:
每户居民每月用水量(吨) | 水费单价(元) |
4.5 |
(1)已知张三家5月份用水13吨,缴费47元,6月份用水15吨,缴费55元.请根据上述信息,求、的值.
(2)在(1)的条件下,由于天气变热,7月份是用水高峰期,张三家计划7月份水费支出不超过100元,那么张三家7月份最多可用多少吨水?