题目内容

已知:如图,AB和AC与⊙O相切于B、C,P是⊙O上一点,且PE⊥AB于E,PD⊥BC于D,PF⊥AC于F.
求证:PD2=PE•PF.
证明:
∵PE⊥AB于E,PD⊥BC于D,PF⊥AC于F,
∴四点D、B、E、P共圆,四点C、D、P、F共圆,(2分)
连接PB、DE则∠1=∠3,∠5=∠PED,(1分)
连接PC、DF,则∠2=∠4,∠6=∠PDF,(1分)
∵AB、AC是⊙O的切线,B、C是切点,
∴∠3=∠4,∠5=∠6.(1分)
∴∠1=∠2,∠PED=∠PDF.(1分)
∴△PED△PDF.(1分)
PD
PF
=
PE
PD
,即PD2=PF•PE.(1分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网