题目内容

【题目】四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)
(1)如图1,若点G是线段CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,求证:△ABF≌△DAE.

(2)如图2,若点G是线段CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,判断线段EF与AF、BF的数量关系,并证明.

(3)若点G是直线BC上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,探究线段EF与AF、BF的数量关系.(请画图、不用证明、直接写答案)

【答案】
(1)

证明:如图1,∵四边形ABCD是正方形,

∴AB=AD,∠DAB=90°,

∴∠DAE+∠BAE=90°,

∵DE⊥AG,BF⊥AG,

∴∠AED=∠AFB=90°,

∴∠EAD+∠ADE=90°,

∴∠ADE=∠BAF,

∵在△ABF和△DAE中

∴△ABF≌△DAE(AAS)


(2)

解:EF=AF+BF,

理由是:如图2,

∵四边形ABCD是正方形,

∴AB=AD,∠DAB=90°,

∴∠DAE+∠BAF=180°﹣90°=90°,

∵DE⊥AG,BF⊥AG,

∴∠AED=∠AFB=90°,

∴∠EAD+∠ADE=90°,

∴∠ADE=∠BAF,

∵在△ABF和△DAE中

∴△ABF≌△DAE(AAS);

∴AE=BF,

∴EF=AE+AF=AF+BF


(3)

解:如图3所示:

∵BF⊥AG,DE⊥AG,

∴∠BFA=∠DEA=90°.

∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,

∴∠EAD=∠FBA.

在△ABF和△DAE中,

∴△ABF≌△DAE(AAS).

∴FB=AE.

∵AE=EF+AF,

∴EF=BF﹣AF.

如图4,∵DE⊥AG,BF⊥AG,

∴∠BFA=∠DEA=90°.

∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,

∴∠EAD=∠FBA.

在△ABF和△DAE中,

∴△ABF≌△DAE(AAS).

∴AE=BF.

∵AE+EF=AF,

∴EF=AF﹣BF;

如图5,

∵DE⊥AG,BF⊥AG,

∴∠BFA=∠DEA=90°.

∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,

∴∠EAD=∠FBA.

在△ABF和△DAE中,

∴△ABF≌△DAE(AAS).

∴AE=BF.

∵AE+AF=EF,

∴EF=AF+BF.


【解析】(1)根据正方形性质得出AB=AD,∠DAB=90°,根据垂直定义得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根据AAS证出两三角形全等即可;(2)根据正方形性质得出AB=AD,∠DAB=90°,根据垂直定义得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根据AAS证出两三角形全等即可,根据全等得出AE=BF,代入即可求出答案;(3)根据正方形性质得出AB=AD,∠DAB=90°,根据垂直定义得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根据AAS证出两三角形全等即可,结合G点可能在BC延长线上以及在线段BC上和在CB延长线上分别得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网