题目内容

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是
(2)连接NB,若AB=8cm,△NBC的周长是14cm. ①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

【答案】
(1)50°
(2)解:①∵AN=BN,

∴BN+CN=AN+CN=AC,

∵AB=AC=8cm,

∴BN+CN=8cm,

∵△NBC的周长是14cm.

∴BC=14﹣8=6cm.

②∵A、B关于直线MN对称,

∴连接AC与MN的交点即为所求的P点,此时P和N重合,

即△BNC的周长就是△PBC的周长最小值,

∴△PBC的周长最小值为14cm


【解析】解:(1)∵AB=AC, ∴∠ABC=∠ACB=70°,
∴∠A=40°,
∵MN是AB的垂直平分线,
∴AN=BN,
∴∠ABN=∠A=40°,
∴∠ANB=100°,
∴∠MNA=50°;
所以答案是50°.
【考点精析】解答此题的关键在于理解线段垂直平分线的性质的相关知识,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等,以及对等腰三角形的性质的理解,了解等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网