题目内容
【题目】如图所示,,点在轴上,将三角形沿轴负方向平移,平移后的图形为三角形,且点的坐标为.
(1)直接写出点的坐标为 ;
(2)在四边形中,点从点出发,沿“”移动,若点的速度为每秒1个单位长度,运动时间为秒,回答下问题:
①求点在运动过程中的坐标(用含的式子表示,写出过程);
②当 秒时,点的横坐标与纵坐标互为相反数;
③当秒秒时,设,,,试问之间的数量关系能否确定?若能,请用含的式子表式,写出过程;若不能,说明理由.
【答案】(1);(2)①,;② 2;③能,,见解析
【解析】
(1)根据平移的性质即可得到结论;
(2)①当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);
②由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;
③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.
(1)根据题意,可得
三角形OAB沿x轴负方向平移3个单位得到三角形DEC,
∵点A的坐标是(1,0),
∴点E的坐标是(-2,0);
故答案为:(-2,0);
(2)①当点P在线段BC上时,点P的坐标(-t,2),
当点P在线段CD上时,点P的坐标(-3,5-t);
②∵点C的坐标为(-3,2),
∴BC=3,CD=2,
∵点P的横坐标与纵坐标互为相反数;
∴点P在线段BC上,
∴PB=CD,
即t=2;
∴当t=2秒时,点P的横坐标与纵坐标互为相反数;
故答案为:2;
③能确定,
如图,过P作PF∥BC交AB于F,
则PF∥AD,
∴∠1=∠CBP=x°,∠2=∠DAP=y°,
∴∠BPA=∠1+∠2=x°+y°=z°,
∴z=x+y.
练习册系列答案
相关题目