题目内容
【题目】如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm。动点E、F分别从点D、B出发,点E以1 cm/s的速度沿边DA向点A移动,点F以1 cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动。以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2。已知y与x的函数图象是抛物线的一部分,如图2所示。请根据图中信息,解答下列问题:
(1)自变量x的取值范围是 ▲ ;
(2)d= ▲ ,m= ▲ ,n= ▲ ;
(3)F出发多少秒时,正方形EFGH的面积为16cm2?
【答案】(1)0≤x≤4。
(2)3,2,25.
(3)F出发或秒时,正方形EFGH的面积为16cm2
【解析】
(1)自变量x的取值范围是点F从点C到点B的运动时间,由时间=距离÷速度,即可求。
(2)由图2知,正方形EFGH的面积的最小值是9,而正方形EFGH的面积最小时,根据地两平行线间垂直线段最短的性质,得d=AB=EF=3。
当正方形EFGH的面积最小时,由BF=DE和EF∥AB得,E、F分别为AD、BC的中点,即m=2。
当正方形EFGH的面积最大时,EF等于矩形ABCD的对角线,根据勾股定理,它为5,即n=25。
解:(1)0≤x≤4。
(2)3,2,25.
(3)过点E作EI⊥BC垂足为点I。则四边形DEIC为矩形。
∴EI=DC=3,CI=DE=x。
∵BF=x,∴IF=4-2x。
在Rt△EFI中,。
∵y是以EF为边长的正方形EFGH的面积,
∴。
当y=16时,,
解得,。
∴F出发或秒时,正方形EFGH的面积为16cm2。
(3)求出正方形EFGH的面积y关于x的函数关系式,即可求得F出发或秒时,正方形EFGH的面积为16cm2。
练习册系列答案
相关题目