题目内容
【题目】如图,一次函数y=2x﹣4与x轴交于点A,与y轴交于点E,过点A作AE的垂线交y轴于点B,连接AB,以AB为边向上作正方形ABCD(如图所示),则点D的坐标为__________.
【答案】(3,2)
【解析】
过点D作DF⊥x轴,垂足为F,求得点A和点E的坐标,从而可得到OA、OE的长,然后依据射影定理可得到OB的长,接下来,证明△OBA≌△FAD,从而可得到OB=AF=1,OA=DF=2,故此可得到点D的坐标.
如图所示:过点D作DF⊥x轴,垂足为F.
令y=0得:2x-4=0,解得:x=2,
∴OA=2.
令x=0得y=-4,
∴OE=4.
∵OBOE=AO2,
∴OB=1
∵ABCD为正方形,
∴∠BAO+∠DAF=90°,
又∵∠ADF+∠DAF=90°,
∴∠BAO=∠ADF.
在△OBA和△FAD中,∠BOA=∠ADF,∠BAO=∠ADF,BA=DF,
∴△OBA≌△FAD,
∴OB=AF=1,OA=DF=2.
∴D(3,2).
故答案为:(3,2).
练习册系列答案
相关题目