题目内容
【题目】如图,某市为方便行人过马路,打算修建一座高为4x(m)的过街天桥.已知天桥的斜面坡度i=1:0.75是指坡面的铅直高度DE(CF)与水平宽度AE(BF)的比,其中DC∥AB,CD=8x(m).
(1)请求出天桥总长和马路宽度AB的比;
(2)若某人从A地出发,横过马路直行(A→E→F→B)到达B地,平均速度是2.5m/s;返回时从天桥由BC→CD→DA到达A地,平均速度是1.5m/s,结果比去时多用了12.8s,请求出马路宽度AB的长.
【答案】(1)9:7;(2)AB的长为28m.
【解析】
(1)先证明四边形CDEF是矩形,得EF=DC=8x,根据坡度的定义可得EA=BF=3x,AD=BC=5x,所以AB=AE+EF+BF=14x,天桥总长和马路宽度AB的比=18x:14x.(2) 由(1)可知,AB=14x,AD+CD+BC=18x,由题意:,解方程可得.
解:(1)∵DE⊥AB,CF⊥AB,
∴∠DEF=∠CFE=90°,
∴DE∥CF,
∵DC∥AB,
∴四边形CDEF是矩形,
∴EF=DC=8x,
∵==,
∴EA=BF=3x,
∴AD=BC=5x,
∴AB=AE+EF+BF=14x,
∴天桥总长和马路宽度AB的比=18x:14x=9:7.
(2)由(1)可知,AB=14x,AD+CD+BC=18x,
由题意: =﹣12.8,
解得x=2,
∴14x=28,
答:马路宽度AB的长为28m.
【题目】为参加学校的“我爱古诗词”知识竞赛,王晓所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.请根据以上频率分布表和频率分布直方图,回答下列问题:
组别 | 分组 | 频数 | 频率 |
1 | 50≤x<60 | 9 | 0.18 |
2 | 60≤x<70 | a | b |
3 | 70≤x<80 | 21 | 0.42 |
4 | 80≤x<90 | m | 0.06 |
5 | 90≤x≤100 | 2 | n |
(1)求出a、b、m、n的值;
(2)老师说:“王晓的测试成绩是全班同学成绩的中位数”,那么王晓的测试成绩在什么范围内?
(3)若要从小明、小敏等几位成绩优秀(分数在80≤x≤100范围内为优秀)的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:几位同学请用A、B、C、D…表示,其中小明为A,小敏为B)