题目内容
【题目】如图,反比例函数的图象过点A(2,3).
(1)求反比例函数的解析式;
(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.
【答案】(1) y=;(2)(6,1),(﹣2,﹣3).
【解析】
(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;
(2)设点P的坐标是(a,),然后根据三角形的面积公式来求点P的坐标.
解:(1)设反比例函数为y=,
∵反比例函数的图象过点A(2,3).则=3,解得m=6.
故该反比例函数的解析式为y=;
(2)设点P的坐标是(a,).
∵A(2,3),
∴AC=3,OC=2.
∵△PAC的面积等于6,
∴×AC×|a﹣2|=6,
解得:|a﹣2|=4,
∴a1=6,a2=﹣2,
∴点P的坐标是(6,1),(﹣2,﹣3).
【题目】如图,P是直径AB上的一点,AB=6,CP⊥AB交半圆于点C,以BC为直角边构造等腰Rt△BCD,∠BCD=90°,连接OD.
小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.
下面是小明的探究过程,请补充完整:
(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当OD=2BC时,线段AP的长度约为________.