题目内容
【题目】如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.
(1)求证:CE⊥DE;
(2)若AB=6,求CF·DF的值;
(3)当△BCE与△DFG相似时,的值是 .
【答案】(1)证明见解析;(2)CF·DF的值为9;(3)的值为或
【解析】
(1)利用平行线及角平分线的性质即可证明;
(2)可证△CFE∽△EFD,可得 ,变形得 由角平分线性质可得
FF=EA=3,代入即可得结论
(3)分类讨论:若△BCE∽△FDG,可证△BCE≌△FEC、△ADE≌△FED,过G作GH⊥AD于H可证△BCE∽△HDG可得 即可得;当△BCD∽△FGD时可证△CFE≌△CFG可推出∠1=60°,∠4=30°在Rt△BCE中 ,在Rt△ADE中 即可得的值.
(1)证明:
∵BC∥AD
∴∠BCD+∠ADC=180°
∵EC、ED分别平分∠BCD、∠ADC
∴∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=180°
∴∠2+∠3=90° ∴∠CED=90°
∴CE⊥DE
(2)∵CE⊥DE,EF⊥CD
∴∠2+∠5=90°,∠2+∠3=90°
∴∠5=∠3
∴△CFE∽△EFD
∴
∴
∵ED平分∠FDA,∠A=∠EFD=90°
∴FF=EA
∵E为AB中点,AB=6
∴FE=AE=BE=3
∴
(3) 若△BCE∽△FDG
∴∠1=∠FDG
∵∠1=∠2
∴∠2=∠FDG
∴EC∥CD
∴
∵∠1=∠2,∠EBC=∠CFE=90°,EC=EC
∴△BCE≌△FCE
∴BC=CF
∵∠3=∠4,∠A=∠EFD=90°,ED=ED
∴△ADE≌△FDE
∴AD=FD
∴
∴
过G作GH⊥AD于H
∴∠DHG=90°
∵∠3=∠4,∠FDG=∠2
又∵∠3+∠4+∠FDG+∠GDH=180°
∠3+∠4+∠1+∠2=180°
∴∠GDH=∠1
又∵∠GFD=∠B=90°
∴△BCE∽△HDG
∴
∵
∴
∴
∴
∴
当△BCD∽△FGD
∴∠GDF=∠BEC
∴∠BEC=∠5=∠3=∠4
∵FD=FD,∠3=∠FDG,∠EFD=∠GFD
∴△EDF≌△GFD
∴EF=FG
∵FD⊥EG
∴∠EFC=∠GFC=90°
又∵CF=CF
∴△CFE≌△CFG
∴∠2=∠GCD
∴∠1=∠2=∠GCD
∵∠1+∠2+∠GCD=180°
∴∠1=60°
∴∠4=30°
在Rt△BCE中
在Rt△ADE中
∴
综上所述的值为或