题目内容
【题目】如图,矩形ABCD中,AB=8,BC=12,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出DP满足的条件: .
【答案】(1)见解析;(2)存在,满足条件的x的值为6或;(3)DP=或10<DP≤12
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.
(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.
(1)证明:∵矩形ABCD,
∴∠ABE=90°,AD∥BC,
∴∠PAF=∠AEB,
又∵PF⊥AE,
∴∠PFA=90°=∠ABE,
∴△PFA∽△ABE.
(2)解:分二种情况:
①若△EFP∽△ABE,如图1,
则∠PEF=∠EAB,
∴PE∥AB,
∴四边形ABEP为矩形,
∴PA=EB=6,即x=6.
②如图2,若△PFE∽△ABE,
则∠PEF=∠AEB,
∵AD∥BC
∴∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
Rt△ABE中,AB=8,BE=6,
∴AE===10,
∴EF=,
∵△PFE∽△ABE,
∴,
∴,
∴PE=,
∴满足条件的x的值为6或.
(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,
∵AP=x,
∴PD═DG=12﹣x,
∵∠DAG=∠AEB,∠AGD=∠B=90°,
∴△AGD∽△EBA,
∴,
∴,
∴x=,
∴,
当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,
此时PD=DE=10,
故答案为:DP=或10<DP≤12.