题目内容
在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交
于E,且BE=BD时,求∠A的度数.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交

(1)证明:∵AB为⊙O1的直径,
∴∠ADB=90°,同理∠BDC=90°,
∴∠ADC=180°,
∴点D在AC上.
(2)如图甲,△ABC是以∠B为直角的直角三角形.理由如下:
连接O1D,O1O2.
∵DO2是⊙O1的切线,O1D是半径,
∴∠O1DO2=90°,
∵O1D=O1B,O2D=O2B,O1O2公共,
∴△O1BO2≌△O1DO2,
∴∠O1BO2=∠O1DO2=90°,
∴△ABC为直角三角形.
又∵BD⊥AC,
∴∠O2DB=∠O2BD=∠A,
∴tan∠O2DB=tan∠A=
=
.
(3)如图乙,连接O1O2,则AC=2O1O2=AB;
令∠O2BD=x,则∠O2BD=∠O2DB=x,
∵BD=BE,
∴∠E=x,
∴∠ABD=∠E+∠BDE=2x,∠ACB=∠ABC=3x;
∵BC为⊙O2直径,
∴∠DBC+∠C=4x=90°,
∴∠A=180°-6x=45°.
∴∠ADB=90°,同理∠BDC=90°,
∴∠ADC=180°,
∴点D在AC上.
(2)如图甲,△ABC是以∠B为直角的直角三角形.理由如下:

连接O1D,O1O2.
∵DO2是⊙O1的切线,O1D是半径,
∴∠O1DO2=90°,
∵O1D=O1B,O2D=O2B,O1O2公共,
∴△O1BO2≌△O1DO2,
∴∠O1BO2=∠O1DO2=90°,
∴△ABC为直角三角形.
又∵BD⊥AC,
∴∠O2DB=∠O2BD=∠A,
∴tan∠O2DB=tan∠A=
BC |
AB |
3 |
4 |
(3)如图乙,连接O1O2,则AC=2O1O2=AB;

令∠O2BD=x,则∠O2BD=∠O2DB=x,
∵BD=BE,
∴∠E=x,
∴∠ABD=∠E+∠BDE=2x,∠ACB=∠ABC=3x;
∵BC为⊙O2直径,
∴∠DBC+∠C=4x=90°,
∴∠A=180°-6x=45°.

练习册系列答案
相关题目