题目内容
【题目】某工艺品厂设计了一款成本为10元/件的小工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x,y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式.
(2)当销售单价为多少元时,工艺品厂试销该小工艺品每天获得的利润最大?最大利润是多少?(利润=销售额﹣成本)
【答案】
(1)解:画出图形,如图所示.
由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),
∵这个一次函数的图象经过(20,500),(30,400)两点,
∴ ,解得: ,
∴函数关系式是y=﹣10x+700.
经验证,其他各点也在y=﹣10x+700上
(2)解:设工艺品试销每天获得利润为W元,
由已知得:W=(x﹣10)(﹣10x+700)=﹣10x2+800x﹣7000=﹣10(x﹣40)2+9000,
∵﹣10<0,
∴当x=40时,W取最大值,最大值为9000.
故:当销售单价为40元时,工艺品厂试销该小工艺品每天获得的利润最大,最大利润是9000元
【解析】(1)将表中各点描在坐标系中,根据点的分别可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出该函数关系式式,再验证其余各点是否在该函数关系式的图象上,由此即可得出结论;(2)设工艺品试销每天获得利润为W元,根据“利用=单件利润×销售数量”即可得出W关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.
【题目】某商场经营一批进价是30元/件的商品,在市场试销中的日销售量y件与销售价x元之间满足一次函数关系.
(1)请借助以下记录确定y与x的函数关系式,并写出自变量x的取值范围;
x | 35 | 40 | 45 | 50 |
y | 57 | 42 | 27 | 12 |
(2)若日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出当销售单价x为多少元时,才能获得最大的销售利润?