题目内容

【题目】如图,△ABC、△DCE、△FEG为等边三角形,边长分别为2、3、5,且从左至右如图排列,连接BF,交DC、DE分别于M、N两点,则△DMN的面积为

【答案】
【解析】解:∵△FEG为等边三角形,∴∠FEG=60°. ∵BC=2,CE=3,EF=5,∴BE=5=EF,
∴∠EBF=∠EFB= ∠FEG=30°.
∵△DCE为等边三角形,
∴∠D=∠DCE=∠DEC=60°,
∴∠DNM=∠EBF+∠DEC=90°.
∵∠DCE=∠FEG=60°,
∴CM∥EF,
∴△BCM∽△BEF,
= ,即 =
解得CM=2,
∴DM=DC﹣CM=3﹣2=1,
∴在Rt△DNM中,
MN=DMsin60°=
DN=DMcos60°=
∴SDNM= DNMN=
故答案为

易证BE=EF=5,从而可得∠EBF= ∠FEG=30°,根据三角形外角的性质可得到∠DNM=90°;易证△BCM∽△BEF,根据相似三角形的性质可求出CM,从而得到DM的值,然后在Rt△DNM中,运用三角函数可求出MN、DN,就可求出△DMN的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网