题目内容

【题目】已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.

(1)求证:四边形ABCD是矩形;

(2)如果AE=EG,求证:AC2=BCBG.

【答案】(1)见解析;(2)见解析.

【解析】

(1)、因为四边形ABCD是平行四边形,所以只要证明∠BAD=90°,即可得到四边形ABCD是矩形;(2)、连接AG,由平行四边形的性质和矩形的性质以及结合已知条件可证明△BCG∽△ABC,再由相似三角形的性质:对应边的比值相等即可证明AC2=BCBG.

(1)、解:证明: BEAC, ∴∠AFB=90°.

∴∠ABE+BAF=90°. ∵∠ABE=CAD. ∴∠CAD+BAF=90°. 即∠BAD=90°.

∵四边形ABCD是平行四边形, ∴四边形ABCD是矩形;

(2)、解:连接AG. AE=EG, ∴∠EAG=EGA, ∵四边形ABCD是平行四边形,

ABCD,ADBC, ∴∠ABG=BGC, ∴∠CAD=BGC, ∴∠AGC=GAC,

CA=CG, ADBC, ∴∠CAD=ACB, ∴∠ACB=BGC,

∵四边形ABCD是矩形∴∠BCG=90°, ∴∠BCG=ABC, ∴△BCG∽△ABC,

AC2=BCBG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网