题目内容

如下图,四边形OABC为菱形,点A、B在以点O为圆心的弧DE上,OA=3,
∠1=∠2, 则扇形ODE的面积为      .
 
3
分析:连接OB.根据等边三角形的性质可以求得∠AOC=120°,再结合∠1=∠2,即可求得扇形所在的圆心角的度数,从而根据扇形的面积公式进行求解.
解答:解:连接OB.

∵OA=OB=OC=AB=BC,
∴∠AOB+∠BOC=120°.
又∠1=∠2,
∴∠DOE=120°.
∴扇形ODE的面积为=3π.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网