题目内容
【题目】如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.
(1)求证:CF∥AB;
(2)若∠DAC=40°,求∠DFC的度数.
【答案】(1)详见解析;(2)20°.
【解析】
(1)根据等边对等角得到∠ABC=∠BAC,由三角形外角的性质得到∠ACE=∠B+∠BAC=2∠ABC,由角平分线的定义得到∠ACE=2∠FCE,等量代换得到∠ABC=∠FCE,根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和三角形外角的性质即可得到结论.
(1)证明:∵AC=BC,
∴∠ABC=∠CAB,
∴∠ACE=∠ABC+∠CAB=2∠ABC
∵CF是∠ACE的平分线,
∴∠ACE=2∠FCE
∴2∠ABC=2∠FCE,
∴∠ABC=∠FCE,
∴CF∥AB;
(2)∵CF是∠ACE的平分线,
∴∠ACE=2∠FCE=∠ADC+∠DAC
∵DF平分∠ADC,
∴∠ADC=2∠FDC;
∴2∠FCE=∠ADC+∠DAC=2∠FDC+∠DAC,
∴2∠FCE﹣2∠FDC=∠DAC
∵∠DFC=∠FCE﹣∠FDC
∴2∠DFC=2∠FCE﹣2∠FDC=∠DAC=40°
∴∠DFC=20°.
练习册系列答案
相关题目