题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.
(1)旋转角的大小;
(2)若AB=10,AC=8,求BE的长.
【答案】(1)90°;(2)14.
【解析】试题分析:(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.
(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.
试题解析:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,
∴∠ACE=90°,即旋转角为90°,
(2)在Rt△ABC中,
∵AB=10,AC=8,
∴BC==6,
∵△ABC绕着点C旋转得到△DCE,
∴CE=CA=8,
∴BE=BC+CE=6+8=14
练习册系列答案
相关题目