题目内容
【题目】如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.
(1)求证:四边形ABFE是平行四边形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.
【答案】(1)证明见解析(2)EF=AB=5.
【解析】(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.
∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.
∴∠D=∠BCF.在Rt△ADE和Rt△BCF中,∴Rt△ADE≌Rt△BCF.
∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形.
(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.
∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.
在Rt△ABE中,AE=3,BE=4,AB=.
∵四边形ABFE是平行四边形,∴EF=AB=5.
【题目】如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是( )
A.
B.
C.
D.
【题目】如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
(1)请补全下表:
30° | 45° | 60° | 90° | 120° | 135° | 150° | |
S | 1 |
(2)填空:
由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
(3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).