题目内容
【题目】如图,一条抛物线与轴交于,两点,与轴交于点,为抛物线的顶点,点在轴上.
(1)求抛物线解析式;
(2)若,求点的坐标;
(3)过点作直线交抛物线于,是否存在以点,,,为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;
(4)坐标平面内一点到点的距离为1个单位,求的最小值.
【答案】(1);(2)或(6,0);(3)Q(2,3)或或;(4).
【解析】
解:(1)把A,B,C三点坐标代入求出解析式即可;
(2)先求出直线DB的解析式,再分①当点P在点B左侧时,②当点P在点B右侧时,分别求出P点坐标即可;
(3)分①当四边形APQC为平行四边形时,②当四边形AQPC为平行四边形时两种情况求出Q点坐标;
(4)先证△MBE∽△OBM得到,则当点D、M、E在同一直线上时,最短,求出最小值即可.
解:(1)∵抛物线与x轴交于A(-1,0),B(3,0)两点,
∴设此抛物线的解析式为y=a(x+1)(x-3),
将点C(0,3)代入,得a=-1,
∴,
(2)∵,
∴顶点D(1,4),
设直线DB解析式为y=kx+b,
将D(1,4),B(3,0)代入得,,
解得:k=﹣2,b=6,
∴直线DB解析式为y=﹣2x+6,
①如图1﹣1,当点P在点B左侧时,
∵∠PCB=∠CBD,
∴CP∥BD,
设直线CP解析式为y=﹣2x+m,
将C(0,3)代入,得m=3,
∴直线CP解析式y=﹣2x+3,
当y=0时,,
∴,
②如图1﹣2,当点P在点B右侧时,
作点P关于直线BC的对称点N,延长CN交x轴于点P',此时∠P'CB=∠CBD,
∵C(0,3),B(3,0),
∴OC=OB,
∴△OBC为等腰直角三角形,
∴∠CPB=45°,
∴∠NBC=45°,
∴△PBN为等腰直角三角形,
∴,
∴,
将C(0,3),代入直线CN解析式y=nx+t,
得:,
解得,,t=3,
∴直线CN解析式为,
当y=0时,x=6,
∴P'(6,0);
综上所述,点P坐标为或(6,0);
(3)①如图2﹣1,当四边形APQC为平行四边形时,
∴CQ∥AP,CQ=AP,
∵yC=3,
∴yQ=3,
令﹣x2+2x+3=3,
解得:x1=0,x2=2,
∴Q(2,3),
②如图2﹣2,当四边形AQPC为平行四边形时,
AC∥PQ,AC=PQ,
∴yC﹣yA=yP﹣yQ=3,
∵yP=0,
∴yQ=﹣3,
令﹣x2+2x+3=﹣3,
解得,,,
∴,
综上所述,点Q的坐标为Q(2,3)或或;
(4)∵点M到点B的距离为1个单位,
∴点M在以点B为圆心,半径为1的圆上运动,如图3
在x轴上作点,连接BM、EM、DE,
∴,
∵BM=1,
∴,
∵∠MBE=∠OBM,
∴△MBE∽△OBM,
∴,
∴,
∴,
∴当点D、M、E在同一直线上时,最短,
∵D(1,4),
∴,
∴的最小值为.