题目内容
【题目】如图,Rt△ABC中,∠C=90°,E为AB中点,D为AC上一点,BF//AC交DE的延长线长于点F,AC=6,BC=5.则四边形FBCD周长的最小值是( )
A.21B.16C.17D.15
【答案】B
【解析】
由条件易知△BFE与△ADE全等,从而BF=AD,则BF+CD=AD+CD=AC=6,所以只需FD最小即可,由垂线段最短原理可知,当FD垂直AC时最短.
∵BF∥AC,
∴∠EBF=∠EAD,
在△BFE和△ADE中,
,
∴△BFE≌△ADE(ASA),
∴BF=AD,
∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD,
∴当FD⊥AC时,FD最短,此时FD=BC=5,
∴四边形FBCD周长的最小值为5+11=16,
故选B.
练习册系列答案
相关题目
【题目】小明和小亮两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们实验的结果如下:
朝上的点数 | ||||||
出现的次数 |
请计算“点朝上”的频率和“点朝上”的频率.
一位同学说:“根据实验,一次实验中出现点朝上的概率最大”.这位同学的说法正确吗?为什么?
小明和小亮各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为的倍数的概率.