题目内容
【题目】如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.
(1)求抛物线的解析式;
(2)如图①所示, 是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;
(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.
【答案】(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析
【解析】
(1)利用待定系数法可求出二次函数的解析式;
(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.
(3) 求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.
解:抛物线顶点为
可设抛物线解析式为
将代入得
抛物线,即
连接,
设点坐标为
当时,最大值为
存在,设点D的坐标为
过作对称轴的垂线,垂足为,
则
在中有
化简得
(舍去),
∴点D(,-3)
连接,在中
在以为圆心,为半径的圆与轴的交点上
此时
设点为(0,m), AQ为的半径
则AQ=OQ+OA, 6=m+3
即
∴
综上所述,点坐标为
故存在点Q,且这样的点有两个点.
练习册系列答案
相关题目