题目内容

【题目】2020年新冠肺炎疫情期间,我市某企业为支援湖北,准备将购买的70吨蔬菜运往武汉,现有甲、乙两种货车可以租用,已知2辆甲货车和3辆乙货车一次可运44吨蔬菜;3辆甲货车和1辆乙货车一次可运38吨蔬菜.

1)求每辆甲种货车和每辆乙种货车一次分别能运多少吨蔬菜?

2)已知甲种货车每辆租金500元,乙种货车每辆租金450元,该企业共租用甲、乙两种货车8辆,设租甲种货车a辆,求租车总费用w(元)与a之间的函数关系式,并求出自变量a的取值范围;

3)在(2)的条件下,请你为该企业设计出费用最少的方案,并求出最少的租车费用.

【答案】1)每辆甲种货车和每辆乙种货车一次分别能运10吨和8吨蔬菜;(2)自变量a的取值范围是3a8,且为整数;(3)租用3辆甲种货车,5辆乙种货车时租车费用最少,最少的租车费用为3750元.

【解析】

1)设每辆甲种货车和每辆乙种货车一次分别能运x吨和y吨蔬菜,根据题意列出方程组求解即可;
2)根据题意即可得总费用w(元)与a之间的函数关系式,再根据题意列不等式即可得出自变量a的取值范围;
3)结合(2)的结论,根据一次函数的性质解答即可.

1)设每辆甲种货车和每辆乙种货车一次分别能运x吨和y吨蔬菜,根据题意得:

解得:

答:每辆甲种货车和每辆乙种货车一次分别能运10吨和8吨蔬菜;

2)根据题意得:w500a+4508a)=50a+3600

∵10a+88a≥70

a≥3

a≤8

自变量a的取值范围是3≤a≤8,且为整数.

3)由(2)知w50a+3600

∵500

wa的增大而增大,

a3时,w最小50×3+36003750

此时8a5

即租用3辆甲种货车,5辆乙种货车时租车费用最少,最少的租车费用为3750元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网