题目内容

【题目】如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,

(1)点点同学通过画图和测量得到以下近似数据:

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.

【答案】
(1)

解:β=α+90°,γ=﹣α+180°

连接OB,

∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,

∵OB=OA,

∴∠OBA=∠OAB=α,

∴∠BOA=180°﹣2α,

∴2β=360°﹣(180°﹣2α),

∴β=α+90°,

∵D是BC的中点,DE⊥BC,

∴OE是线段BC的垂直平分线,

∴BE=CE,∠BED=∠CED,∠EDC=90°

∵∠BCA=∠EDC+∠CED,

∴β=90°+∠CED,

∴∠CED=α,

∴∠CED=∠OBA=α,

∴O、A、E、B四点共圆,

∴∠EBO+∠EAG=180°,

∴∠EBA+∠OBA+∠EAG=180°,

∴γ+α=180°


(2)

解:当γ=135°时,此时图形如图所示,

∴α=45°,β=135°,

∴∠BOA=90°,∠BCE=45°,

由(1)可知:O、A、E、B四点共圆,

∴∠BEC=90°,

∵△ABE的面积为△ABC的面积的4倍,

设CE=3x,AC=x,

由(1)可知:BC=2CD=6,

∵∠BCE=45°,

∴CE=BE=3x,

∴由勾股定理可知:(3x)2+(3x)2=62

x=

∴BE=CE=3 ,AC=

∴AE=AC+CE=4

在Rt△ABE中,

由勾股定理可知:AB2=(3 2+(4 2

∴AB=5

∵∠BAO=45°,

∴∠AOB=90°,

在Rt△AOB中,设半径为r,

由勾股定理可知:AB2=2r2

∴r=5,

∴⊙O半径的长为5.


【解析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以 ,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;
【考点精析】通过灵活运用余角和补角的特征和三角形的面积,掌握互余、互补是指两个角的数量关系,与两个角的位置无关;三角形的面积=1/2×底×高即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网