题目内容

【题目】如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.
(1)求证:PQ是⊙O的切线;
(2)求证:BD2=ACBQ;
(3)若AC、BQ的长是关于x的方程x+ =m的两实根,且tan∠PCD= ,求⊙O的半径.

【答案】
(1)证明:∵PQ∥AB,

∴∠ABD=∠BDQ=∠ACD,

∵∠ACD=∠BCD,

∴∠BDQ=∠ACD,

如图1,连接OB,OD,交AB于E,

则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,

在△OBD中,∠OBD+∠ODB+∠O=180°,

∴2∠ODB+2∠O=180°,

∴∠ODB+∠O=90°,

∴PQ是⊙O的切线


(2)证明:如图2,连接AD,

由(1)知PQ是⊙O的切线,

∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,

∴AD=BD,

∵∠DBQ=∠ACD,

∴△BDQ∽△ACD,

=

∴BD2=ACBQ


(3)解:方程x+ =m可化为x2﹣mx+4=0,

∵AC、BQ的长是关于x的方程x+ =m的两实根,

∴ACBQ=4,由(2)得BD2=ACBQ,

∴BD2=4,

∴BD=2,

由(1)知PQ是⊙O的切线,

∴OD⊥PQ,

∵PQ∥AB,

∴OD⊥AB,由(1)得∠PCD=∠ABD,

∵tan∠PCD=

∴tan∠ABD=

∴BE=3DE,

∴DE2+(3DE)2=BD2=4,

∴DE=

∴BE=

设OB=OD=R,

∴OE=R﹣

∵OB2=OE2+BE2

∴R2=(R﹣ 2+( 2

解得:R=2

∴⊙O的半径为2


【解析】(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;(3)根据题意得到ACBQ=4,得到BD=2,由(1)知PQ是⊙O的切线,由切线的性质得到OD⊥PQ,根据平行线的性质得到OD⊥AB,根据三角函数的定义得到BE=3DE,根据勾股定理得到BE= ,设OB=OD=R,根据勾股定理即可得到结论.
【考点精析】关于本题考查的分式方程的解和圆周角定理,需要了解分式方程无解(转化成整式方程来解,产生了增根;转化的整式方程无解);解的正负情况:先化为整式方程,求整式方程的解;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网