题目内容

【题目】如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3 ,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE= CE;④S阴影= .其中正确结论的序号是

【答案】①②④
【解析】解:①∵AF是AB翻折而来,∴AF=AB=6,
∵AD=BC=3 ,∴DF= =3,
∴F是CD中点;∴①正确;②连接OP,

∵⊙O与AD相切于点P,∴OP⊥AD,
∵AD⊥DC,∴OP∥CD,
=
设OP=OF=x,则 = ,解得:x=2,
∴②正确;③∵RT△ADF中,AF=6,DF=3,
∴∠DAF=30°,∠AFD=60°,
∴∠EAF=∠EAB=30°,
∴AE=2EF;
∵∠AFE=90°,
∴∠EFC=90°﹣∠AFD=30°,
∴EF=2EC,
∴AE=4CE,∴③错误;
④连接OG,作OH⊥FG,

∵∠AFD=60°,OF=OG,∴△OFG为等边△;同理△OPG为等边△;
∴∠POG=∠FOG=60°,OH= OG= ,S扇形OPG=S扇形OGF
∴S阴影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG
=S矩形OPDH S△OFG=2× ×2× )= .∴④正确;
所以答案是①②④.
【考点精析】认真审题,首先需要了解矩形的性质(矩形的四个角都是直角,矩形的对角线相等),还要掌握切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网