题目内容
【题目】如图,在△ABC中,∠ABC=2∠C,AP和BQ分别为∠BAC和∠ABC的角平分线,若△ABQ的周长为18,BP=4,则AB的长为_____________
【答案】7
【解析】
根据角平分线的定义得到∠CBQ=∠ABC,再由等角对等边得到CQ=BQ,得到BQ+AQ=CQ+AQ=AC;过点P作PD∥BQ,由“AAS”可证△ABP≌△ADP,由全等三角形的性质可得AB=AD,BP=DP,得到AB+BP=AD+CD=AC,即BQ+AQ=AB+BP,即可得出AB的长.
解:∵BQ是∠ABC的角平分线,
∴∠CBQ=∠ABC.
又∵∠ABC=2∠C,
∴∠CBQ=∠ABC=∠C,
∴ BQ=CQ,
∴ BQ+AQ=CQ+AQ=AC(1).
如图所示,过点P作PD∥BQ交CQ于点D,
则∠CPD=∠CBQ,∠ADP=∠AQB,
∵∠AQB=∠C+∠CBQ=2∠C,
∴∠ADP=2∠C,
∴∠ABC=∠ADP.
又∵AP是∠BAC的角平分线,
∴∠BAP=∠CAP.
在△ABP和△ADP中,
,
∴△ABP≌△ADP(AAS),
∴AB=AD,BP=DP,
∴AB+BP=AD+CD=AC(2),
由(1)(2)得:BQ+AQ=AB+BP,
又∵△ABQ的周长为18,BP=4,
∴18-AB= AB+4,
∴ AB=7.
故答案为:7.
练习册系列答案
相关题目