题目内容
【题目】如图1,,,是郑州市二七区三个垃圾存放点,点,分别位于点的正北和正东方向,米,八位环卫工人分别测得的长度如下表:
甲 | 乙 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
BC(单位:米) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:
(1)求表中长度的平均数、中位数、众数;
(2)求处的垃圾量,并将图2补充完整;
【答案】(1)米,米,米;(2),图见解析.
【解析】
(1)利用平均数等概念求法可得出答案;
(2)利用扇形统计图以及条形统计图可得出处垃圾量以及所占百分比,进而求出垃圾总量,进而得出处垃圾量.
(1)(米),
中位数是:米,众数是:米;
(2)处垃圾存放量为:,在扇形统计图中所占比例为:,
垃圾总量为:(千克),
处垃圾存放量为:,占.
补全条形图如下:
练习册系列答案
相关题目
【题目】某商家计划从厂家采购空调和冰箱两种产品共台,空调和冰箱的采购单价与销售单价如表所示:
采购单价 | 销售单价 | |
空调 | ||
冰箱 |
若采购空调台,且所采购的空调和冰箱全部售完,求商家的利润;
厂家有规定,采购空调的数量不少于台,且空调采购单价不低于元,问商家采购空调多少台时总利润最大?并求最大利润.
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;
(3)观察函数图象,写出2条函数的性质;
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所对应的方程x2﹣2|x|=0有
②方程x2﹣2|x|=2有 个实数根.