题目内容
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;
(3)观察函数图象,写出2条函数的性质;
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所对应的方程x2﹣2|x|=0有
②方程x2﹣2|x|=2有 个实数根.
【答案】(1)m=0;(2)答案见解析;(3)答案见解析;(4)3;3;2.
【解析】
试题分析:(1)将x=﹣2代入函数解析式中求出y值,即可得出结论;(2)根据表格数据,描点补充完图形;(3)根据函数图象,寻找出对称轴以及函数的单调区间,此题得解;(4)①观察函数图象,根据函数图象与x轴有3个交点,即可得出结论;②画出直线y=2,观察图形,可得出函数y=x2﹣2|x|的图象与y=2只有2个交点,此题得解.
试题解析:(1)当x=﹣2时,y=(﹣2)2﹣2×|﹣2|=0, ∴m=0,
(2)根据给定的表格中数据描点画出图形,如图1所示.
(3)观察函数图象,可得出:①函数图象关于y轴对称,②当x>1时,y随x的增大而增大.
(4)①观察函数图象可知:当x=﹣2、0、2时,y=0, ∴该函数图象与x轴有3个交点,
即对应的方程x2﹣2|x|=0有3个实数根.
②在图中作直线y=2,如图2所示. 观察函数图象可知:函数y=x2﹣2|x|的图象与y=2只有2个交点.
练习册系列答案
相关题目