题目内容
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
【答案】解:(1)一次函数的表达式为
(2)当销售单价定为87元时,商场可获得最大利润,最大利润是891元
(3)销售单价的范围是.
【解析】
试题(1)列出二元一次方程组解出k与b的值可求出一次函数的表达式.
(2)依题意求出W与x的函数表达式可推出当x=87时商场可获得最大利润.
(3)由w=500推出x2﹣180x+7700=0解出x的值即可.
试题解析:(1)根据题意得:,解得k=﹣1,b=120.所求一次函数的表达式为;
(2)=,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(1+45%),∴60≤x≤87,∴当x=87时,W==891,∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.
(3)令=500,解方程,解得,,又∵60≤≤87 ,所以当≥500时,70≤≤87.
【题目】已知是的函数,自变量的取值范围为,下表是与的几组对应值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
(2)根据画出的函数图象填空.
①该函数图象与轴的交点坐标为_____.
②直接写出该函数的一条性质.
【题目】如图1,,,是郑州市二七区三个垃圾存放点,点,分别位于点的正北和正东方向,米,八位环卫工人分别测得的长度如下表:
甲 | 乙 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
BC(单位:米) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:
(1)求表中长度的平均数、中位数、众数;
(2)求处的垃圾量,并将图2补充完整;