题目内容
【题目】如图,山上有一座高塔,山脚下有一圆柱形建筑物平台,高塔及山的剖面与圆柱形建筑物平台的剖面ABCD在同一平面上,在点A处测得塔顶H的仰角为35°,在点D处测得塔顶H的仰角为45°,又测得圆柱形建筑物的上底面直径AD为6m,高CD为2.8m,则塔顶端H到地面的高度HG为( )
(参考数据:,,,)
A.10.8mB.14mC.16.8mD.29.8m
【答案】C
【解析】
延长AD交HG于M,则MG=28m,设DM=x,根据三角函数的概念用含x的代数式表示HM,根据题意列出方程,解方程即可.
延长AD交HG于M,则MG=CD=28m,
设DM=x,
在Rt△AHM中,HM=(x+6)tan35°,
在Rt△DHM中,HM=xtan45°=x,
∴(x+6)tan35°=x,
即(x+6)×0.70=x,
∴x=14,
即HM=14.
∴HG=14+2.8=16.8(m).
故选C.
练习册系列答案
相关题目
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)