题目内容
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
【答案】(1)0.68 , 0.701 ;(2)0.7;(3)0.7;(4)252°.
【解析】
(1)根据频率的算法,频率=,可得各个频率;填空即可;
(2)根据频率的定义,可得当n很大时,频率将会接近其概率;
(3)根据概率的求法计算即可;
(4)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.
(1)填表如下:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | 0.68 | 0.69 | 0.705 | 0.701 |
(2)当n很大时,频率将会接近(68+111+136+345+564+701)÷(100+150+200+500+800+1000)=0.7,
故答案为:0.7;
(3)获得铅笔的概率约是0.7,
故答案为:0.7;
(4)扇形的圆心角约是0.7×360°=252°.
练习册系列答案
相关题目