题目内容

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为 的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
(1)求证:EF为半圆O的切线;
(2)若DA=DF=6 ,求阴影区域的面积.(结果保留根号和π)

【答案】
(1)证明:连接OD,

∵D为 的中点,

∴∠CAD=∠BAD,

∵OA=OD,

∴∠BAD=∠ADO,

∴∠CAD=∠ADO,

∵DE⊥AC,

∴∠E=90°,

∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,

∴OD⊥EF,

∴EF为半圆O的切线


(2)解:连接OC与CD,

∵DA=DF,

∴∠BAD=∠F,

∴∠BAD=∠F=∠CAD,

又∵∠BAD+∠CAD+∠F=90°,

∴∠F=30°,∠BAC=60°,

∵OC=OA,

∴△AOC为等边三角形,

∴∠AOC=60°,∠COB=120°,

∵OD⊥EF,∠F=30°,

∴∠DOF=60°,

在Rt△ODF中,DF=6

∴OD=DFtan30°=6,

在Rt△AED中,DA=6 ,∠CAD=30°,

∴DE=DAsin30 ,EA=DAcos30°=9,

∵∠COD=180°﹣∠AOC﹣∠DOF=60°,

∴CD∥AB,

故SACD=SCOD

∴S阴影=SAED﹣S扇形COD= ×9×3 π×62= ﹣6π


【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出SACD=SCOD , 再利用S阴影=SAED﹣S扇形COD , 求出答案.
【考点精析】掌握扇形面积计算公式是解答本题的根本,需要知道在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网