题目内容
【题目】如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是( )
A.4.5
B.5
C.5.5
D.6
【答案】A
【解析】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点, ∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,
∴△AEF的面积= ×△ABE的面积= ×△ABD的面积= ×△ABC的面积= ,
同理可得△AEG的面积= ,
△BCE的面积= ×△ABC的面积=6,
又∵FG是△BCE的中位线,
∴△EFG的面积= ×△BCE的面积= ,
∴△AFG的面积是 ×3= ,
故选:A.
【考点精析】利用三角形的面积和三角形中位线定理对题目进行判断即可得到答案,需要熟知三角形的面积=1/2×底×高;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
【题目】如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )
30 |
| 2 sin60° | 22 |
﹣3 | ﹣2 | ﹣ sin45° | 0 |
|﹣5| | 6 | 23 | |
( )﹣1 | 4 |
| ( )﹣1 |
A.5
B.6
C.7
D.8
【题目】某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | [0,15) | [15,30) | [30,45) | [45,60) | [60,75) | [75,90) |
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动. (i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为X,求X的分布列和数学期望.