题目内容
【题目】如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.
【答案】9n+3
【解析】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成, ∴正方形和等边三角形的和=6+6=12=9+3;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+3;
∵第3个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=30=9×3+3,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+3.
所以答案是:9n+3.
练习册系列答案
相关题目
【题目】如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )
30 |
| 2 sin60° | 22 |
﹣3 | ﹣2 | ﹣ sin45° | 0 |
|﹣5| | 6 | 23 | |
( )﹣1 | 4 |
| ( )﹣1 |
A.5
B.6
C.7
D.8