题目内容

【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为

【答案】(6+2 )a
【解析】解:∵∠C=30°,∠BAC=90°,DE⊥AC, ∴BC=2AB,CD=2DE=2a.
∵AB=AD,
∴点D是斜边BC的中点,
∴BC=2CD=4a,AB= BC=2a,
∴AC= = =2 a,
∴△ABC的周长=AB+BC+AC=2a+4a+2 a=(6+2 )a.
故答案为:(6+2 )a.
先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网