题目内容
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:
(1)若点(x1 , y1),(x2 , y2)在图象上,当x2>x1>0时,y2>y1;
(2)当x<﹣1时,y>0;
(3)4a+2b+c>0;
(4)x=3是关于x方程ax2+bx+c=0的一个根,其中正确的个数为( )
A.1个
B.2个
C.3个
D.4个
【答案】A
【解析】解:由图象可知该二次函数图象的对称轴为x=1,当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,(1)由图象知,点(x1 , y1),(x2 , y2)在图象上,当x2>x1>0时,函数图象的增减性不定,所以可能y2>y1也可能y2<y1 , 所以(1)错误;(2)由图象知,当x<﹣1时,y>0正确;(3)令x=2,由图象知,4a+2b+c<0,所以此选项错误;(4)由图象知,x=3不是二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点,所以x=3不是关于x方程ax2+bx+c=0的一个根,所以此选项错误;
所以正确的个数有1个,
故选A.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
练习册系列答案
相关题目