题目内容

【题目】将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为

【答案】
【解析】解:连接OB,过B作BE⊥x轴于E,则∠BEO=90°,
∵四边形OABC是正方形,
∴AB=OA=2,∠A=90°,∠BOA=45°,
由勾股定理得:OB= =2
∵∠α=15°,∠BOA=45°,
∴∠BOE=45°+15°=60°,
在Rt△BOE中,BE=OB×sin60°=2 × = ,OE=OB×cos60°=
∴B的坐标为(﹣ ).
故答案为:
连接OB,过B作BE⊥x轴于E,则∠BEO=90°,根据正方形性质得出AB=OA=2,∠A=90°,∠BOA=45°,根据勾股定理求出OB,解直角三角形求出OE、BE,即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网