题目内容
在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):
以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:
∠ABC= ,∠A′BC= ,OA+OB+OC= .
以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:
∠ABC= ,∠A′BC= ,OA+OB+OC= .
解:作图如下:
30°;90°;。
30°;90°;。
试题分析:按题意作图。
∵∠C=90°,AC=1,BC=,∴。∴∠ABC=30°。
∵△AOB绕点B顺时针方向旋转60°,∴∠A′BC=∠ABC+60°=30°+60°=90°。
∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2。
∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO。∴△BOO′是等边三角形。
∴BO=OO′,∠BOO′=∠BO′O=60°。
∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°。
∴C、O、A′、O′四点共线。
在Rt△A′BC中,。
练习册系列答案
相关题目