题目内容
【题目】如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF= ,则点F与点C的最小距离为_____.
【答案】3﹣1 .
【解析】
如图,取AB的中点G,连接FG,根据已知条件易证△AFG∽△EAD,根据相似三角形的性质求得FG=1;即可得点F在以点G为圆心,半径为1的圆上,所以当点F在线段GC上时,点F与点C的距离最小,由此即可求得点F与点C的最小距离.
如图,取AB的中点G,连接FG,
∵AB=4,AD=6,
∴AG=2,;
在Rt△AEF,∠EAF=90°,tan∠AEF= ,
∴,
∴,
∵∠EAF=∠BAD=90°,
∴∠FAG=∠EAD,
∴△AFG∽△EAD,
∴,
∵DE=3,
∴FG=1;
∵点E为⊙D上一动点,
∴点F在以点G为圆心,半径为1的圆上,
∴当点F在线段GC上时,点F与点C的距离最小,
在Rt△GBC中,BC=6,GB=3,由勾股定理求得GC=3,
∴FC=3﹣1.
即点F与点C的最小距离为3﹣1.
故答案为:3﹣1.
【题目】某校为了解中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
节目 | 人数(名) | 百分比 |
最强大脑 | ||
朗读者 | ||
中国诗词大会 | ||
出彩中国人 |
根据以上提供的信息.解答下列问题:
, , ;
补全上面的条形统计图;
名女同学.其余为男同学,现要从中随机抽取名同学代表学校参加市里组织的竞赛活动,请求出所抽取的名同学恰好是名男同学和名女同学的概率.
【题目】已知函数,小李同学对该函数的图象与性质进行了探究,下面是小李同学探究的过程,补充完整:
(1)直接写出自变量x的取值范围:__________;
(2)下表是y与x的几组对应值:
x | … | -4 | -1 | 0 | 1 | 3 | 4 | 5 | n | … | ||||
y | … | m | 0 | -1 | -4 | 8 | 5 | 4 | 3 | … |
则m= ,n= ;
(3)如图所示,在平面直角坐标系xoy中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;
(4)观察函数图象可知:该函数图象的对称中心的坐标是______;
(5)当时,关于x的方程有实数解,直接写出k的取值范围_______.