题目内容
【题目】如图,方格纸中小正方形的边长为1,,两点在格点上,要在图中格点上找到点,使得的面积为2,满足条件的点有( )
A.无数个B.7个C.6个D.5个
【答案】C
【解析】
如解图中的C1、D,连接C1D,根据勾股定理即可求出C1D和AB,然后根据三线合一即可求出S△C1AB=2,然后根据平行线之间的距离处处相等即可求出另外两个点C2 、C3,然后同理可找出C4、C5 、C6,从而得出结论.
解:设如下图所示中的两个格点为C1、D,连接C1D
根据勾股定理可得C1D=AD=BD=,AB=
∵C1A= C1B,点D为AB的中点
∴C1D⊥AB
∴S△C1AB=AB·C1D=2
∴此时点C1即为所求
过点C1作AB的平行线,交如图所示的格点于C2 、C3,根据平行线之间的距离处处相等,此时C2 、C3也符合题意;
同理可得:S△C4AB=2,
∴点C4即为所求,过点C4作AB的平行线,交如图所示的格点于C5 、C6,根据平行线之间的距离处处相等,此时C4 、C5也符合题意.
满足条件的点C共有6个
故选C.
练习册系列答案
相关题目