题目内容

【题目】我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:

(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;

(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;

(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,An在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长.

【答案】(1)抛物线的表达式为y=﹣3x2﹣6x;(2)b1=﹣4,b2=0;(3)正方形的边长是10.

【解析】试题分析:(1)把点(﹣2,0)和(﹣1,3)分别代入y=ax2+bx,得到关于a、b的二元一次方程组,解方程组即可;

(2)根据二次函数的性质,得出抛物线y=ax2+bx的顶点坐标是(﹣,﹣),把顶点坐标代入y=﹣2x,得出﹣=﹣2×(﹣),即可求出b的值;

(3)由于这组抛物线的顶点A1、A2、…,An在直线y=﹣2x上,根据(2)的结论可知,b=4或b=0.①当b=0时,不合题意舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为An(﹣n,2n),则Dn(﹣3n,2n),因为以An为顶点的抛物线不可能经过点Dn,设第n+k(k为正整数)条抛物线经过点Dn,此时第n+k条抛物线的顶点坐标是An+k(﹣n﹣k,2n+2k),根据﹣=﹣n﹣k,得出a==﹣,即第n+k条抛物线的表达式为y=﹣x2﹣4x,根据Dn(﹣3n,2n)在第n+k条抛物线上,得到2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,进而求解即可.

试题解析:(1)∵抛物线y=ax2+bx经过点(﹣2,0)和(﹣1,3),

,解得

∴抛物线的表达式为y=﹣3x2﹣6x;

(2)∵抛物线y=ax2+bx的顶点坐标是(﹣,﹣),且该点在直线y=﹣2x上,

∴﹣=﹣2×(﹣),

∵a≠0,∴﹣b2=4b,

解得b1=﹣4,b2=0;

(3)这组抛物线的顶点A1、A2、…,An在直线y=﹣2x上,

由(2)可知,b=4或b=0.

①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;

②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.

由题意可知,第n条抛物线的顶点为An(﹣n,2n),则Dn(﹣3n,2n),

∵以An为顶点的抛物线不可能经过点Dn,设第n+k(k为正整数)条抛物线经过点Dn,此时第n+k条抛物线的顶点坐标是An+k(﹣n﹣k,2n+2k),

∴﹣=﹣n﹣k,∴a==﹣

∴第n+k条抛物线的表达式为y=﹣ x2﹣4x,

∵Dn(﹣3n,2n)在第n+k条抛物线上,

∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k= n,

∵n,k为正整数,且n≤12,

∴n1=5,n2=10.

当n=5时,k=4,n+k=9;

当n=10时,k=8,n+k=18>12(舍去),

∴D5(﹣15,10),

∴正方形的边长是10.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网