题目内容
【题目】在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.
活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.
(思考)图2中的四边形ABDE是平行四边形吗?请说明理由.
(发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.
活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).
(探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.
【答案】【思考】是,理由见解析;【发现】;【探究】BD=2OF,理由见解析;
【解析】
【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB∥DE,可得出结论;
【发现】连接BE交AD于点O,设AF=x(cm),则OA=OE=(x+4),得出OF=OA﹣AF=2﹣x,由勾股定理可得,解方程求出x,则AF可求出;
【探究】如图2,延长OF交AE于点H,证明△EFO≌△EFH(ASA),得出EO=EH,FO=FH,则∠EHO=∠EOH=∠OBD=∠ODB,可证得△EOH≌△OBD(AAS),得出BD=OH,则结论得证.
解:【思考】四边形ABDE是平行四边形.
证明:如图,∵△ABC≌△DEF,
∴AB=DE,∠BAC=∠EDF,
∴AB∥DE,
∴四边形ABDE是平行四边形;
【发现】
如图1,连接BE交AD于点O,
∵四边形ABDE为矩形,
∴OA=OD=OB=OE,
设AF=x(cm),则OA=OE=(x+4),
∴OF=OA﹣AF=2﹣x,
在Rt△OFE中,∵OF2+EF2=OE2,
∴,
解得:x=,
∴AF=cm.
【探究】BD=2OF,
证明:如图2,延长OF交AE于点H,
∵四边形ABDE为矩形,
∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,
∴∠OBD=∠ODB,∠OAE=∠OEA,
∴∠ABD+∠BDE+∠DEA+∠EAB=360°,
∴∠ABD+∠BAE=180°,
∴AE∥BD,
∴∠OHE=∠ODB,
∵EF平分∠OEH,
∴∠OEF=∠HEF,
∵∠EFO=∠EFH=90°,EF=EF,
∴△EFO≌△EFH(ASA),
∴EO=EH,FO=FH,
∴∠EHO=∠EOH=∠OBD=∠ODB,
∴△EOH≌△OBD(AAS),
∴BD=OH=2OF.