题目内容
【题目】如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是( )
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
【答案】D
【解析】试题分析:利用圆周角定理可得A正确;证明△ADE∽△ABC,可得出B正确;由B选项的证明,即可得出C正确;利用排除法可得D不一定正确.
∵BC是直径,
∴∠BDC=90°,
∴BD⊥AC,故A正确;
∵BD平分∠ABC,BD⊥AC,
∴△ABC是等腰三角形,AD=CD,
∵∠AED=∠ACB,
∴△ADE∽△ABC,
∴△ADE是等腰三角形,
∴AD=DE=CD,
∴===,
∴AC2=2ABAE,故B正确;
由B的证明过程,可得C选项正确.
故选D.
练习册系列答案
相关题目