题目内容
【题目】如图,在Rt△ABC中,∠B=90°,AC=50cm,∠A=60°,点D从C点沿CA方向以4cm/s的速度向点A匀速运动,同时点区从A点沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?若能,求出相应的t值;若不能,请说明理由.
【答案】(1)证明见解析;(2)能,当t=10时,AEFD是菱形.
【解析】
(1)根据两动点的速度与时间表示出AE,CD,在直角三角形CDF中,利用30度角所对的直角边等于斜边的一半表示出DF即可;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值.
(1)∵直角△ABC中,∠C=90°﹣∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=CD=2t,
∴AE=DF;
(2)∵DF⊥BC,
∴∠CFD=90°,
∵∠B=90°,
∴∠B=∠CFD,
∴DF∥AB,
由(1)得:DF=AE=2t,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60﹣4t=2t,
解得:t=10,
即当t=10时,AEFD是菱形.
练习册系列答案
相关题目
【题目】九年级某班组织了一次经典诵读比赛,甲、乙两组各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲组数据的中位数是________,乙组数据的众数是________;
(2)已知甲组数据的方差是1.4分2 ,则成绩较为整齐的是哪个队?