题目内容
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤ 方程ax2+bx=0的两个根为 x1=0,x2=﹣4,其中正确的结论有( )
A.②③B.②③④C.②③⑤D.②③④⑤
【答案】D
【解析】
根据二次函数的图像与性质即可得出答案.
由图像可知,a<0,b<0,故①错误;
∵图像与x轴有两个交点
∴,故②正确;
当x=-3时,y=9a﹣3b+c,在x轴的上方
∴y=9a﹣3b+c>0,故③正确;
∵对称轴
∴b-4a=0,故④正确;
由图像可知,方程ax2+bx=0的两个根为 x1=0,x2=﹣4,故⑤正确;
故答案选择D.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:
(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是_______;
(2)下表是y与x的几组对应值.
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | … | m | ﹣24 | ﹣6 | 0 | 0 | 0 | 6 | 24 | 60 | … |
①m=_____;
②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=_____;
(3)在平面直角坐标系xOy中,A(xA,yA),B(xB,﹣yA)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.
①标出点B的位置;
②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.
③写出直线y=x﹣1与②中你画出图象的交点的横坐标之和为______.