题目内容
【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=,BC=2,求⊙O的半径.
【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O的半径为
【解析】
(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;
(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程,解此方程即可求得⊙O的半径.
解:(1)直线CE与⊙O相切.…
理由:连接OE,
∵四边形ABCD是矩形,
∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,
∴∠DCE+∠DEC=90°,∠ACB=∠DAC,
又∠DCE=∠ACB,
∴∠DEC+∠DAC=90°,
∵OE=OA,
∴∠OEA=∠DAC,
∴∠DEC+∠OEA=90°,
∴∠OEC=90°,
∴OE⊥EC,
∵OE为圆O半径,
∴直线CE与⊙O相切;…
(2)∵∠B=∠D,∠DCE=∠ACB,
∴△CDE∽△CBA,
∴ ,
又CD=AB=,BC=2,
∴DE=1
根据勾股定理得EC=,
又,…
设OA为x,则,
解得,
∴⊙O的半径为.
练习册系列答案
相关题目