题目内容
【题目】(理论学习)学习图形变换中的轴对称知识后,我们容易在直线上找到点,使的值最小,如图所示,根据这一理论知识解决下列问题:
(1)(实践运用)如图,已知的直径为,弧所对圆心角的度数为,点是弧的中点,请你在直径上找一点,使的值最小,并求的最小值.
(2)(拓展延伸)在图中的四边形的对角线上找一点,使.(尺规作图,保留作图痕迹,不必写出作法).
【答案】(1);(2)详见解析.
【解析】
(1)先作B关于CD的对称点E,连接OA、OB、OE、AE,AE交CD于P,求出∠AOE=90°,求出△AOE是等腰直角三角形,根据勾股定理求出AE,即可求出答案;
(2)画点B关于AC的对称点B′,延长DB′交AC于点P.则点P即为所求.
解:(1)作点关于的对称点,则点在圆上,连接交于点,则最短,连接.
,是弧的中点,
,
关于的对称点,
又,是等腰直角三角形,
∴
(2)如图,作点关于的对称点B′,连接DB′交于点,
由AC是BB′的垂直平分线,可得∠APB=∠APD.
练习册系列答案
相关题目
【题目】某公司对自家办公大楼一块米的正方形墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修;中心区是正方形,用材料乙装修). 两种材料的成本如下表:
材料 | 甲 | 乙 |
价格(元/米2) | 550 | 500 |
设矩形的较短边的长为米,装修材料的总费用为元.
(1)计算中心区的边的长(用含的代数式表示);
(2)求关于的函数解析式;
(3)当中心区的边长不小于2米时,预备材料的购买资金32000元够用吗?请利用函数的增减性来说明理由.