题目内容

【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,

(1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O 的半径.

【答案】(1)证明见解析;(2).

【解析】

(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=3,求出∠490°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.

(1)证明:连接

中,

为圆的切线;

(2)设圆的半径为

中,

根据勾股定理得:

中,

根据勾股定理得:

中,,即

解得:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网